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Abstract : This paper presents a robust control method for cylindrical manipulator with dynamic and static 

disturbances and external disturbances. As we know, in the industry, follow the desired trajectory by manipulators 

for sensitive tasks, is very important. So our main purpose is study about desired trajectory tracking by cylindrical 

robotic manipulator. Furthermore, parametric model uncertainties such as mass parameter variation and external 

disturbances and the static and dynamics of the model uncertainties are also taken into simulation results. A 

Lyapunov function is employed to prove the proposed controller stability. Simulation results on a cylindrical robotic 

manipulator show the proposed controller track desired trajectory better than PID, FOPID and adaptive optimal 

controller.  
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INTRODUCTION 

 

When we want to track desired trajectory, try to reduce the error between the generated trajectory and 

desired trajectory, as long as attain to zero or very close to zero. So far, a lot of research has been done on 

trajectory tracking by manipulators. Trajectory tracking is known as a control problem. In reference (Cheah et al., 

2005), a adaptive jacobian controller to control the position tracking with uncertainties is presented and this 

method against uncertainties in the parametrs of the manipulator is very flexible. In paper (Shi et al., 2005), 

decentralized robust tracking control method in robot with uncertain parameters is presented. Robust tracking 

control in this way, include a feedforward and a feedback robust control. The feature of this method is that you 

can set control parameters online. 

In reference (Torres et al., 2014), the linear quadratic regulator method (LQR) for optimal control of a 

linear time-varying model of a robot is used to design an online adaptive optimal stable controller to trace the 

robot arm path. 

In today's research, some studies relating to the use of neural networks for design tracking controller 

(Cuong and Nan, 2016, Zuo et al., 2010, Wai and Chen, 2006). In (Cuong and Nan, 2016), a radial basis function 

(RBF) is used to a multi-link robotic arm with a robust compensator, for increasing the accuracy of tracking. In 

this paper, the existing uncertainties, including external disturbances and uncertainties in the system parameters 

considered. The RBF network, control the position of the joint. Here robust compensator, as an auxiliary control, 

stability and robustness of the system guarantees under the existing uncertainties. 

Similar articles can be found in the fuzzy controller to control the position of the robot and trajectory 

tracking (Ngo et al., 2014). Also, the combination fuzzy and neural network for tracking control problem, have 
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been studied (Zuo et al., 2010, Wai and Chen, 2006, Ngo et al., 2014). 

There are research on sliding mode and combine it with other methods in the field of mechanical arm 

(Park et al., 2001, Sassi and Abdelkrim, 2015, Islam and Liu, 2011). In the article (Park et al., 2001), an adaptive 

sliding mode control law present for uncertain nonlinear robotic arm model. This paper results good and fast 

trajectory tracking, and robustness against uncertainties. 

In most presented methods, controllers are designed to trace desired trajectory in joint space (Torres et 

al., 2014, Biess et al., 2006). Because the end effector trace desired trajectory, we need to solve inverse 

kinematics problem. Based on accurate models of the dynamics of mechanical arm, linearization of the system 

is presented (Luh et al., 1980). But these methods because of the uncertainty of dynamics and kinematics will 

have errors. The researchers in this field, control laws such as robust performance and optimal function are 

provided to control the mechanical arm (Shi et al., 2005, Islam and Liu, 2011, Pan and Xin, 2014). 

Now, we refer to the section of this article. In section 2, we analyze dynamic model of a rigid robot and 

in section 3, we present proposed method for robust controller and the end section, we simulate trajectory tracking 

for cylindrical manipulator and compare proposed method with PID, FOPID and adaptive optimal controllers. 

   

Problem Staetments 

The dynamical model of a rigid robot with considering the uncertainties: 

       , d s dM q q C q q q G q F q F q T        (1) 

Where   *    n nM q Rò  is the inertia matrix,   *,     n nC q q Rò  is the vector of Coriolis and centripetal forces, 

  *1  nG q  Rò  is a vector function consisting of gravitational forces, 
*     n n

dF Rò  is a diagonal matrix of viscous 

and dynamic friction coefficients,   *1  n

sF q  Rò  is the vector of unstructured friction effects such as static friction 

terms, 
*1  n

dT  Rò  is the vector of any generalized input due to disturbances or un-modeled dynamics and 
*1    n Rò  

is the vector of applied joint torques. The robot dynamics described above has the following properties: 

Property 1: The inertia matrix  M q  is symmetric and positive semi-definite for all     nq Rò and  M q  is 

uniformly bounded. That is 

1 2|| ( ) ||M q        or      1 2( )I M q I     (2) 

Where || . ||  is Euclidean norm. Also 1  and 2  are positive constant. 

Property 2: The centripetal and Coriolis matrix are skew-symmetric, that is, satisfies the following relationship 

( ) 2 ( , )T Ty M q y y C q q y ,  , , ny q q   (3) 

Assumption 1: To simplify the dynamic Eq. (1), we assume 

   , ( , )M q q C q q q N q q     

   ( , ) d s dN q q G q F q F q T      

(4) 
 
(5) 

Assumption 2: Because of the uncertainty, dynamics Eq. (4), divided into two parts, known parts and unknown 

parts. That is 

0M M M   , 0C C C   , 0N N N    (6) 
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Where 0 0,M C  and 0N  are known parts and ,M C  and N are unknown parts. 

Assumption 3: For uncertain parameters 

|| || mM   , || || cC   , || || || ||
d s dg F F TN q          (7) 

   

Robust Control Design 

In control theory, robust control is an approach to controller design that explicitly deals with uncertainty 

(Razmjooy et al., 2016, Razmjooy and Khalilpour, 2015, Hosseini et al., 2013, Khalilpour et al., 2013). As we 

know dynamic Eq. (4), divided into known parts and unknown parts. According to the nominal model of robot 

dynamic, control law for simplified Eq. (4) is presented as follows: 

     0 0 0, ( , )d d rM q q C q q q N q q M q u      (8) 

Where 
n

ru R  is robust control vector, it should be designed and , n

d dq q R  are desired acceleration vector 

and desired velocity vector. 

According to Eq. (6) and equal the Eq. (4) and Eq. (8), we have 

( ) ( ) ( )d d rM M q C C q N N Mu Mq Cq N          (9) 

With the following equations: 

d

d

d

e q q

e q q

e q q

 

 

 

 

(10) 

Where respectively, related to the position error, velocity error and acceleration error in workspace, Eq. (9) can 

be simplified as follows: 

1 1( ) re M H M Ce u      

d dH Mq Cq N      

(11) 

Also can be considered Eq. (12) to simplify as follows: 

1 1( )K M H M Ce      (12) 

Where, K is the sum of all uncertainties.   

Now, with considering the following equation 

re K u    (13) 

According to our assumptions, we have 

1

1|| || ( || || || || || || || ||)
d s dm d c d g F F T cK q q q e                (14) 

Since 
1, , , , , ,

d s dm c g F F T        are positive constants, we can simplify the Eq. (14) as follows: 

1

1|| || || || || || || || || ||m d dK q q q e            (15) 

Where , , ,     are positive constant. 

We consider the variable S as follows: 

S e ce   (16) 

Now for design of control vector, consider the following equation equal zero: 

0S e ce    (17) 
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With place Eq. (13) into Eq. (17) 

0eq cKS u e     (18) 

equ K ce    (19) 

According to Eq. (19), we have: 

|| || || || || || || ||equ K ce K ce       (20) 

Robust control vector is proposed as follows: 

|| || sign( )r equ k u S  (21) 

Where k  is positive constant and sign( )S is sign function. 

Analysis Of System's Stability 

To prove the stability of the closed-loop system expressed in Eq. (13), the function of the Lyapunov was selected 

as follows: 

1
( )

2

TV S S S  
(22) 

The derivative of V, we have: 

( ) TV S S S  (23) 

With place equation Eq. (17) into Eq. (23) 

( ) ( )TV S e ce S   (24) 

From inserting Eq. (13) and Eq. (20) into Eq. (24), we have 

( ) ( || || sign( ) )T

eqV S K k u S ce S     (25) 

With place Eq. (20) into Eq. (25) 

( ) || || . || || || || . || || ( )T T T TV S K S k K S k ce S ce S       (26) 

As we can see, by taking 1k   is asymptotically stable system. 

According to the stability of the system, robust control vector is 

|| || sign( )r equ k u S  (27) 

1

1 || || || || || || ||| | || || |||| m d dequ q q q e ce          
 

(28) 

Eq. (28) can simplify as follows: 

1

1 || || || || || |||| | || ||| m d deq q d eu q q          (29) 

Where, d is difference between   and c . 

Analysis And Simulation 

Now we are going to apply robust control system for proposed cylindrical manipulator. The dynamic model of 

cylindrical manipulator achieved using the Euler-Lagrange. We have 

     ,M q q C q q q G q     (30) 

Where 

 
  2

13 2 3 2

2 3

3

004

040

00

J m m q

M q m m

m

  
 

  
  

 

 
(31) 
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 
 

 

 2 3 2 2 2 3 2 1

2 3 2 1

4 04

, 004

000

m m q q m m q q

C q q m m q q

 
 

   
  

 

 
(32) 

 

3

0

0G q

m g

 
 


 
  

 
 
(33) 

Also with consider Eq. (1), we have dynamic and static disturbances and external disturbances as follow 

0.9 0 0

  0 0.9 0

0 0 0.9

dF

 
 


 
  

 
 
(34) 
 

0.9

  0.9

0.9

sF

 
 


 
  

 

 
(35) 

 10 sin

  10

10

d

t

T

 
 

  
 
 

 
 
(36) 

 

At first, we consider dynamic system with uncertainties. This system simulate with 10c   and 1k  and robust 

control vector in Eq. (27) and Eq. (28). 

As shown in Figure 1, the system will follow the desired trajectory well. But due to vibration in the control vector 

(torque), shown in the Fig. (2), the system will not be in real terms. To fix this problem, the function sign( )S with 

the function S replaced. So we have 

|| ||rs equ k u S  (37) 

As shown in Fig. (3), trajectory tracking compared to Fig. (1), a small error has been created. Instead the control 

vector (torque), are acceptable Fig. (4). 

 

 

Figure1. Trajectory tracking with ru  
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Figure 2. Vibration in control vector 

 

 

Figure 3. Trajectory tracking with rsu  

 

 

Figure 4. Control vector with rsu  
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Now, we want to simulate system without considering uncertainties, and check trajectory tracking for control 

vector rsu . In Fig. (5), we analyze trajectory tracking for links with several, error norms are )6( and in Fig. k  

shown.  

 

 

Figure 5. Trajectory tracking with rsu  and without uncertainties 

 

 

Figure 6. Error norms with rsu  and without uncertainties 

 

To examine the accuracy of the disturbances and uncertainties, uncertainties import our system. As 

shown in Fig. (7), we compared trajectory tracking with 0 1k   , 1k   and 1k   for links. As is evident, with 

increased, vector control will be k , trajectory tracking is better. But it should be noted that with increasing k  

very large in the initial times and it may in fact, is unacceptable. For better comparison, error norms in Fig. (8) 

are placed.   
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Figure 7. Trajectory tracking with rsu  and uncertainties 

 

 

Figure 8. Error norms with rsu  and uncertainties 

 

According to the results, the best value k for the control vector is equal 1. To be able to improve error, 

coefficient c in Eq. (16) is equal 15. 

Now our method compared with PID, FOPID and optimal adaptive controller (Fig. (9) and Fig. (10)). In PID 

controller Pk , Ik and Dk coefficients, respectively, are equal 20, 2 and 30. In FOPID controller, which is based 

on PI D 
 have five control elements, respectively, are equal 30Pk  , 2Ik  , 30Dk  , 0.5   and 

0.35  .For the optimal adaptive controller, can be referred to the reference [3].    
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Figure 9. Compare trajectory tracking 

 

 
Figure 10. Compare error norms 

 

CONCLUSION 

 

In this paper present and simulate robust controller for cylindrical manipulator to trace the desired 

trajectory. This method was compared with PID, FOPID and optimal adaptive controller and the results shows 

proposed method track desired trajectory as well. Also proposed method is better in speed to answer.   
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